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1 Introduction

Factorization theory studies the arithmetic properties of domains or commu-
tative, cancellative monoids where unique factorization fails to hold. For a
reference see any of the recent works [2,5,12,15] or the upcoming survey [4].
The present work determines a standard arithmetic invariant for a particular
type of monoid. Previous work in this direction left a significant gap, and we
close much of this gap. Unfortunately, the problem becomes complex so it
appears to be quite difficult to close the gap completely.

Let N denote the set of positive integers, and N0 denote the set of non-
negative integers. Let a, b ∈ N with a ≤ b and a2 ≡ a (mod b). Set M(a, b) =
{x ∈ N : x ≡ a (mod b)} ∪ {1}. This set is a monoid under multiplication.
Such sets are called arithmetic congruence monoids, and their arithmetic has
received considerable attention recently [6–11,14,16,19]. If gcd(a, b) = 1, then
the ACM is a Krull monoid, whose arithmetic is well-studied (see [13]). The
accepted elasticity question was resolved in [8] for the case where gcd(a, b) is
not a prime power, so we restrict our attention to the case wherein gcd(a, b)
is a prime power, in which case M(a, b) is called a local (singular) arithmetic
congruence monoid. Specifically, we consider the local arithmetic congruence
monoid, henceforth ACM, given as M = M(pαξ, pαn), for some ξ, n, p, α ∈ N
with p prime and gcd(ξ, n) = 1. Note also that gcd(p, n) = 1 is a consequence
of a2 ≡ a (mod b).

For a monoid M , we say that a nonunit x ∈M is irreducible if there are no
factorizations x = y ·z where y, z are nonunits from M . ACM’s are examples of
C-monoids (for a reference see the monograph [15]); consequently each nonunit
x ∈ M = M(pαξ, pαn) has at least one factorization into irreducibles. Set
L(x) = {n|x = x1x2 · · ·xn, with each xi irreducible in M}; this set is known
to be finite for all C-monoids (and easy to see for ACM’s specifically, because

N is well-ordered). We define the elasticity of x, denoted ρ(x), as maxL(x)
minL(x) . We

define the elasticity of M as the supremum of ρ(x) over all nonunits x ∈M . If
the supremum is actually a maximum, i.e. if there is some x ∈M where ρ(x) =
ρ(M), we say that M has accepted elasticity. This is an important semigroup
invariant that is well-understood for certain semigroups but not for others.
For example, in [15] it was shown that if the monoid is finitely generated then
it has accepted elasticity; further, transfer homomorphisms preserve accepted
elasticity. For a survey of elasticity (including accepted elasticity) in integral
domains see [3].

It was shown in [8] that if gcd(a, b) is neither 1 nor a prime power, then M
has infinite elasticity (and hence does not have accepted elasticity). Therein
was also shown that if gcd(a, b) = 1, then M is equivalent to a block monoid,
with accepted elasticity, equal to half of the Davenport constant of Z×b . The
question of accepted elasticity in local ACM’s was considered in [9], where the
question was answered completely in the special case of p generating Z×n . We
reprove their result with our methods, as Theorem 3. We will be able to answer
the question for most other cases. The answer depends on the (multiplicative)
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group structure of Z×n , and on the cyclic subgroup generated by the element
[p] ∈ Z×n . Broadly, if this subgroup has “large” index, elasticity will be accepted
for all or almost all α. Otherwise, the answer is more complicated, and depends
on the residue class of α, modulo φ(n).

We now recall some standard notation from nonunique factorization the-
ory. Let G be a finite abelian group. Although in our context we write G
multiplicatively, our definitions will be compatible with the traditional ones
in which groups are written additively. We use F(G) to denote the set of all
finite length (unordered) sequences with terms from G, refer to the elements of
F(G) as sequences, and write all sequences multiplicatively, so that a sequence
S ∈ F(G) is written in the form

S = g1 · g2 · . . . · gl =
∏
g∈G

g·νg(S), with νg(S) ∈ N0 for all g ∈ G.

We call νg(S) the multiplicity of g in S. For d ∈ N, we call

Sd =
∏
g∈G

g·dνg(S) ∈ F(G) the d− fold product of S.

The notation S1|S indicates that S1 is a subsequence of S, that is νg(S1) ≤
νg(S) for all g ∈ G. For S1, S2, . . . , Sm, each a subsequence of S, if

m∑
i=1

νg(Si) = νg(S) for all g ∈ G,

we write S1S2 · · ·Sm = S and call this a partition of S. If instead

m∑
i=1

νg(Si) ≤ νg(S) for all g ∈ G,

we write S1S2 · · ·Sm|S and call this a subpartition of S.
For a sequence S = g1 · g2 · . . . · gl =

∏
g∈G g

·νg(S) ∈ F(G), we call

|S| = l =
∑
g∈G

νg(S) ∈ N0 the length of S,

σ(S) =

l∏
i=1

gi =
∏
g∈G

gνg(S) ∈ G the sum of S,

Σ(S) =
{∏
i∈I

gi : I ⊆ [1, l], 0 6= |I|
}
⊆ G the set of subsequence sums of S,

and Σ′(S) =
{∏
i∈I

gi : I ⊆ [1, l], 0 6= |I| 6= l
}
⊆ G

the set of proper subsequence sums of S.
Henceforth, let M = M(pαξ, pαn) be an ACM, and let x ∈ Z satisfy

gcd(x, n) = 1. We denote by [x] the equivalence class in Z×n containing x. We
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define the valuation νp(x) as the unique integer d such that pd|x and pd+1 - x,
as paralleling the above valuation for p ∈ G and x ∈ F(G). The following are
elementary results about ACM’s that are either found in, or are easy to derive
from, the previous ACM papers.

Lemma 1 Let M = M(pαξ, pαn) be an ACM. Let β be the unique minimal
integer satisfying β ≥ α and [p]β = [1]. Then

1. For any u ∈ N, u ∈M \ {1} if and only if [u] = 1 and νp(u) ≥ α.
2. If u ∈M is irreducible, then α ≤ νp(u) ≤ α+ β − 1.

3. ρ(M) = α+β−1
α .

4. For any u ∈ M , there are some a, l ∈ N0 such that a ≥ α and u =
paq1q2 · · · ql, where each qi is prime and satisfies gcd(qi, pn) = 1.

5. We may determine ξ as the unique integer in [1, n−1] satisfying [ξ] = [p]−α.
6. We have pβ ∈M and ps /∈M for all s ∈ [1, β).

Consequently, an ACM M(pαξ, pαn) may be determined by p, α, n alone,
and we will write M(p, α, n) for convenience, with ξ and β defined implicitly
whenever needed. The main result for ACM’s that our methods produce is the
following theorem, whose proof will be presented in the final section.

Theorem 1 Fix n ∈ N and consider the arithmetic congruence monoid M(p, α, n)
for various α and various primes p coprime to n. Then:

1. M(p, α, n) has accepted elasticity for all p and all sufficiently large α if for
some distinct odd primes p1, p2, p3 and positive integers a1, a2 we have:

(a) n ∈ {1, 2, 8, 12}; or
(b) p1p2p3|n or 4p1p2|n or 8p1|n; or
(c) n ∈ {pa11 p

a2
2 , 2p

a1
1 p

a2
2 }, and gcd(p1 − 1, p2 − 1) > 2.

2. For all other n, there are infinitely many primes p′ for which M(p′, α, n)
has accepted elasticity for all sufficiently large α, and also infinitely many
other primes p′′ for which M(p′′, α, n) does not have accepted elasticity for
infinitely many α.

The classification of p in (2) depends on its congruence class modulo φ(n).

Our results will also make more precise these broad statements, giving good
bounds for “sufficiently large α” as well as classifying most (and for some n
all) congruence classes modulo φ(n).

2 Configurations

Our primary tool in determining whether an ACM has accepted elasticity will
be the study of configurations, as defined below.

Let G be a finite abelian group, and let g ∈ G. We denote the order of g
in G by |g|G, or |g| when unambiguous.
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Definition 1 Let G be a finite abelian group. Let g ∈ G. Let δ, γ ∈ N satisfy
δ ≥ |g| > γ ≥ 0. Suppose that there is some sequence S ∈ F(G) and some
c, d ∈ N with c

d ≥ 1 + δ−1
δ−γ satisfying

1. There is some partition S1S2 · · ·Sd = S such that for each i ∈ [1, d],
(a) σ(Si) = gγ+1, and
(b) Σ(Si) ∩ {g, g2, . . . , gγ} = ∅; and also

2. There is some subpartition T1T2 · · ·Tc|S, satisfying σ(Ti) = gγ for each
i ∈ [1, c].

We call this sequence, partition, and subpartition a (G, g, δ, γ)-configuration.

Note that if (c, d) satisfy the conditions, then so do (kc, kd) for each k ∈ N,
by considering the subpartition T k1 T

k
2 · · ·T kc |Sk = Sk1S

k
2 · · ·Skd . Hence we will

typically assume without loss of generality that (δ − γ)|d.
The connection between (G, g, δ, γ)-configurations and accepted elasticity

in ACMs, is given by the following. With this result we will be able to set
aside p, α, β and instead focus on G = Z×n , g = [p], δ, γ, such that 0 ≤ γ < |g|
and δ is a multiple of |g|.

Theorem 2 Let M = M(p, α, n) be an ACM. Then M has accepted elasticity
if and only if there exists a (Z×n , [p], β, β − α)-configuration.

Proof Suppose first that M has accepted elasticity. Then there is some pair
of factorizations into irreducibles u1u2 · · ·us = v1v2 · · · vt with s

t = α+β−1
α =

ρ(M). By Lemma 1, sα ≤
∑s
i=1 νp(ui) =

∑t
i=1 νp(vi) ≤ t(α + β − 1). All

inequalities are therefore equalities, so νp(ui) = α, νp(vi) = α+ β − 1 for all i.

Express each vi = pα+β−1q
(i)
1 q

(i)
2 · · · q

(i)
li

as in Lemma 1. For each i ∈ [1, s],

we define a sequence from Z×n given by Si = [q
(i)
1 ][q

(i)
2 ] · · · [q(i)li ]. We have [1] =

[vi] = [p]α+β−1σ(Si), so σ(Si) = [p]β−α+1. Suppose there were a subsequence

T |Si with σ(T ) = [p]x for some x ∈ [1, β − α]. Then we set v′i = pβ−x
∏
q
(i)
j ,

where the product is taken over all [q
(i)
j ] ∈ T . We set v′′i = vi

v′i
. We have νp(v

′
i) ≥

α and νp(v
′′
i ) = α + x − 1 ≥ α. Further [v′i] = [p]β−xσ(T ) = [p]β = [1]. Since

[1] = [v′iv
′′
i ] = [v′i][v

′′
i ], also [v′′i ] = 1. Hence v′i, v

′′
i ∈ M , which contradicts the

irreducibility of vi. Therefore, the Si each satisfy the conditions of Definition
1.1. Set S = S1S2 · · ·St.

Express each ui = pαr
(i)
1 r

(i)
2 · · · r

(i)
li

as in Lemma 1. For each i ∈ [1, t], we

define a sequence from Z×n given by Ti = [r
(i)
1 ][r

(i)
2 ] · · · [r(i)li ]. We have [1] =

[ui] = [p]ασ(Ti), so σ(Ti) = [p]−α = [p]β−α. By unique factorization in N, in
fact T1T2 · · ·Ts = S. Thus, T1 · · ·Ts is a partition (and hence a subpartition)
of S. It remains to observe that s

t = α+β−1
α = 1 + β−1

β−(β−α) .

Suppose now that there exists a (Z×n , [p], β, β−α)-configuration. We assume
without loss that α|d. Define φ : Z×n → N such that φ([x]) = qx for some
prime qx 6= p satisfying [qx] = [x]. Such a φ exists by Dirichlet’s theorem
on primes. We now set vi = pα+β−1

∏
[x]∈Si φ([x]) for i ∈ [1, d]. Note that

[vi] = [p]α+β−1σ(Si) = [p]α+β−1[p]β−α+1 = [1], so vi ∈ M . Suppose that vi
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were reducible with factors v′i, v
′′
i . We have α + β − 1 = νp(vi) = νp(v

′
i) +

νp(v
′′
i ) ≥ νp(v′i) + α, so νp(v

′
i) ≤ β − 1. We have v′i = pxφ(T ) for some x with

α ≤ x ≤ β−1 and some T |Si. We have [1] = [v′i] = [p]xσ(T ), so σ(T ) = [p]β−x,
which is a contradiction. Hence each vi ∈M is irreducible.

The second property gives us c
d ≥ 1 + β−1

β−(β−α) = α+β−1
α . We set c′ =

bd(α+β−1α )c = ( dα )(α + β − 1). For i ∈ [1, c′ − 1] ⊆ [1, c], we take ui =

pα
∏

[x]∈Ti φ([x]), and set uc′ = φ(S)
u1u2···uc′−1

. We have [ui] = [p]ασ(Ti) =

[p]α[p]β−α = [1], so ui ∈M for i ∈ [1, c′− 1]. Set u = v1v2 · · · vd = u1u2 · · ·uc′ .
We have [1] = [u] = [u1][u2] · · · [uc′−1][uc′ ], so [uc′ ] = [1]. Further, since
αc′ = d(α + β − 1) = νp(u) = (c′ − 1)α + νp(uc′) we have νp(uc′) = α.
Hence uc′ ∈M . Note that each ui is irreducible since νp(ui) = α.

Finally, we have ρ(u) ≥ c′

d = α+β−1
α = ρ(M), so M has accepted elasticity.

ut
We now broadly outline the remainder of this paper. In the subsequent

sections, we will find that if G/〈g〉 is “large”, then configurations will exist
for all γ, provided that δ is sufficiently large. However, if G/〈g〉 is “small”,
then configurations will exist for “small” gamma and will not exist for “large”
gamma (keeping in mind that γ ∈ [0, |g| − 1]).

In the ACM context, we fix p and n. As we vary α we get all γ, δ as
γ = (−α mod |g|) and δ = α + γ, where |g| denotes the order of [p] in Z×n .
Thus “large” δ corresponds to large α, while “large” γ corresponds to certain
congruence classes of α modulo |g|, or more generally modulo φ(n), the Euler
totient.

3 Finding Configurations

We first present some results that produce (G, g, δ, γ)-configurations in certain
special cases. This section contains miscellaneous results, ending with a new
proof of the case where G = 〈g〉, corresponding to ACM’s where p is a primitive
root modulo n.

Recall that by Theorem 2, we are only concerned with δ that are multiples
of |g|. The following proposition, in the context of ACMs, states thatM(p, α, n)
has accepted elasticity, provided that α = β. For other equivalent conditions,
see Proposition 2.

Proposition 1 Let G be any finite abelian group. Let g ∈ G, and let δ ∈ N
satisfy δ ≥ |g|. Then there is a (G, g, δ, 0)-configuration.

Proof Set d = 1, and set S = S1 = (g). We have σ(S1) = g0+1, while
{g, g2, . . . , gγ} = ∅. For the second condition, we take c = d1 + δ−1

δ e = 2
and set T1 = T2 = ∅, which gives σ(Ti) = 1 = g0. ut

Consequently, we will assume henceforth that γ > 0 and β > α. By the
following proposition, we equally assume that ξ > 1 and ρ(M) ≥ 2. The
following result is found as Theorem 2.4 in [7]; we include a brief proof for
completeness.
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Proposition 2 Given ACM M , the following are equivalent: (1) ξ = 1; (2)
[p]α = [1]; (3) β = α; and (4) ρ(M) < 2.

Proof If (1) holds, since [ξ] = [p]−α, in fact [1] = [p]α, so (2) holds. If (2)
holds, since α ≥ α and [p]α = [1], in fact β = α, so (3) holds. If (3) holds, then
[ξ] = [p]−α = [p]−β = [1]. Because 1 ≤ ξ ≤ n− 1, in fact ξ = 1, so (1) holds. If
(3) holds, then ρ(M) = β+α−1

α = 2− 1
β < 2, so (4) holds. Lastly, if (4) holds,

then β+α−1
α < 2, so β − 1 < α ≤ β, so (3) holds. ut

The following proposition, in the context of ACMs, states that if M(p, α, n)
has accepted elasticity, then so does M(p, α + t, n) for all t ∈ N satisfying
[p]t = [1].

Proposition 3 Suppose that there is a (G, g, δ, γ)-configuration with γ ≥ 1.
Let δ′ ∈ N with δ′ > δ. Then there is a (G, g, δ′, γ)-configuration.

Proof We will show that the same configuration works. Because δ only appears
in relation to c and d, we only need to check that inequality. Because γ ≥ 1,
we have δ−1

δ−γ ≥
δ′−δ
δ′−δ . Their mediant is δ′−1

δ′−γ , which must be between these

fractions and thus no more than δ−1
δ−γ . Consequently, c

d ≥ 1 + δ−1
δ−γ ≥ 1 + δ′−1

δ′−γ .
ut

In the ACM context, the combination of the previous proposition with
the following, states that if M(p, 1, n) has accepted elasticity, then so does
M(p, α, n) for all α ≥ 1.

Proposition 4 Suppose that there is a (G, g, |g|, |g| − 1)-configuration. Let
γ ∈ N0 with γ < |g| − 1. Then there is a (G, g, |g|, γ)-configuration.

Proof Set k = |g| − γ − 1. Without loss, we may assume that (k + 1)|c and
(k+ 1)|d. We set S′i = Si(g

−1)·k for i ∈ [1, d]. We have S′ = S′1S
′
2 · · ·S′d = SV

for V = (g−1)·dk. We have σ(S′i) = g|g|−k = gγ+1. Note that Σ(g−1)·k =
{g−1, . . . , g−k} = {gγ+1, gγ+2, . . . , g|g|−1}, and that (Σ(Si))∩〈g〉 = {1}. Hence
(Σ(S′i))∩〈g〉 = {1, gγ+1, gγ+2, . . . , g|g|−1}, which is disjoint from {g, g2, . . . , gγ}.

For each i ∈ [1, c
k+1 ], we set T ′i = T(i−1)(k+1)+1T(i−1)(k+1)+2 · · ·Ti(k+1). We

have σ(T ′i ) = [g](k+1)(|g|−1) = [g]−k−1 = [g]γ . For each i ∈ [ c
k+1 + 1, c

k+1 +
kd
k+1 ], we set T ′i = (g−1)·k+1 and again σ(T ′i ) = gγ . By hypothesis c

d ≥ 1 +
|g|−1

|g|−(|g|−1) = |g|. Hence c
d + k ≥ |g|+ k = (|g| − γ) + (|g| − 1) = (|g| − γ)(1 +

|g|−1
|g|−γ ) = (k + 1)(1 + |g|−1

|g|−γ ). Consequently,
c
k+1+

kd
k+1

d ≥ 1 + |g|−1
|g|−γ . ut

The following proposition, in the context of ACMs, states that M(p, α, n)
has accepted elasticity, provided that α is “large” and |[p]| is composite. Specifi-
cally, if |[p]| = rs in Z×n , then we need α ∈ (β−r, β). The remaining possibilities
for α, namely (β− rs, β− r], are not covered; however in some cases there are
no configurations for these α, as will be shown in Proposition 6.
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Proposition 5 Let G be any finite abelian group. Let g ∈ G. Suppose that
|g| = rs with r, s > 1 and rs > 4. Let γ ∈ N satisfy γ < r. Then there is a
(G, g, rs, γ)-configuration.

Proof We first consider the special case {s = 2, γ = 1}; by hypothesis r ≥ 3.
We set S1 = (g−1)·2r−2, S2 = (g2)·2r+1, T = (g−1) · (g2). We have σ(S1) =
σ(S2) = g2 = gγ+1 and σ(T ) = gγ . Also, Σ(S1) = 〈g〉 \ {1, g} and Σ(S2) =
〈g2〉, which does not contain g since |g| is even. We set S = S1S2 and d = 2.
We set c = 2r−2 and see that T c|S. Lastly we have c

d = r−1 ≥ 2 = 1+ 2r−1
2r−1 .

Henceforth we exclude the case {s = 2, γ = 1}. Set S1 = (g−1)·rs−γ−1.
We have σ(S1) = gγ+1−rs = gγ+1, and Σ(S1) = {g−1, g−2, . . . , g−rs+γ+1} =
{gγ+1, gγ+2, . . . , grs−1}, which has no intersection with {g1, g2, . . . , gγ}. Set

S2 = (gr)·2rs
2 · (gγ+1). We have σ(S2) = gγ+1 and Σ(S2) = 〈gr〉 ∪ gγ+1〈gr〉,

which again has no intersection with {g1, g2, . . . , gγ}. We set d = rs − γ and
S = Sd−11 S2.

We now set c = s(rs−2+γ(s−2))+1. We set T0 = (g−1) ·(gγ+1) and Ti =
(g−1)·r−γ · (gr) for i ∈ [1, c−1]. Set T = T0T1 · · ·Tc−1; we will prove that T |S.
There are three group elements to consider. First, (gγ+1) appears once in both
T and S. Second, (gr) appears 2rs2 times in S and c− 1 ≤ s(rs+ rs) = 2rs2

times in T . Lastly, considering (g−1), we need (rs−γ−1)2 ≥ 1+(c−1)(r−γ).
We chose c so that (rs−γ−1)2− (c−1)(r−γ) = (γ(s−1)−1)2. This integer
is zero only when γ = 1 and s = 2, a possibility which has been excluded.

We now prove that c
d ≥ 1 + rs−1

rs−γ . This rearranges to X ≥ 0, for X =

rs2 + γs2− 2γs− 2s+ 2− 2rs+ γ = (s− 1)2γ+ s(r(s− 2)− 2) + 2. If s ≥ 3 we
have X ≥ 4γ + 3(r − 2) + 2 ≥ 0; if s = 2 we have X = γ − 2 ≥ 0 since γ = 1
has been excluded. ut

Let G be a nontrivial finite abelian group. Suppose that g ∈ G generates
G, i.e. G = 〈g〉. It is a well-known result from group theory that if G ∼= Z×n for
some n, then |G| = |g| is even. In this situation the following proposition states
that the bound of Proposition 5 is tight (provided |g| > 4). It also shows that
although (G, g, δ, γ)-configurations may be plentiful, they are not omnipresent
– not all ACMs have accepted elasticity.

Proposition 6 Let G be a finite abelian group. Let g ∈ G satisfy G = 〈g〉.
Suppose that |g| = 2r ≥ 4. Let γ, δ ∈ N satisfy δ ≥ 2r > γ ≥ r. Then there is
no (G, g, δ, γ)-configuration.

Proof We write G = {g−0, g−1, . . . , g−(2r−1)}, and define φ : G → N0 via
φ(g−i) = i, for i ∈ [0, 2r − 1]. Note that φ(ab) ≡ φ(a) + φ(b) (mod 2r). We
extend φ to sequences in the natural way, via φ(a · b) = φ(a) + φ(b). For
any sequence U , we have φ(U) ≡ φ(σ(U)) (mod 2r). If U satisfies Σ(U) ∩
{g, g2, . . . , gγ} = ∅; we will prove that in fact φ(U) = φ(σ(U)). We proceed
by induction on |U |; if |U | = 1 the result is clear. Otherwise we write U =
U ′ · (g−s). By the inductive hypothesis, φ(U ′) = φ(σ(U ′)), so we have φ(U) =
φ(U ′) + s = φ(σ(U ′)) + s. Note that s < 2r − γ, because otherwise g−s ∈
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{g, g2, . . . , gγ}. Because γ ≥ r we have s < r. Similarly φ(σ(U ′)) < r, but then
φ(U) < 2r. Combining with φ(U) ≡ φ(σ(U)) gives φ(U) = φ(σ(U)).

Suppose now there is a (G, g, δ, γ)-configuration. By the above, each Si
satisfies φ(Si) = φ(σ(Si)) = 2r − γ − 1. Now, φ(Ti) ≥ φ(σ(Ti)) = 2r − γ.
Hence we have d(2r − γ − 1) = dφ(Si) = φ(S) ≥

∑c
i=1 φ(Ti) ≥ c(2r − γ). We

rearrange to get c
d ≤

2r−γ−1
2r−γ < 1 + δ−1

δ−γ , a contradiction. ut

We combine Propositions 5 and 6 into the following theorem, which was
the main result of [9] (with different proof). It completely solves the special
case where p is a primitive root modulo n. In particular, this requires Z×n to
be cyclic, which in the ACM context occurs only when n = 2, 4, qk, or 2qk for
some odd prime q.

Theorem 3 ([9]) Let G be a finite abelian group. Let g ∈ G satisfy G = 〈g〉.
Suppose that |g| is even. Let δ, γ ∈ N with δ ≥ |g| > γ > 0. Then there is a
(G, g, δ, γ)-configuration if and only if

1. |g| > 4, and
2. |g| > 2γ.

Proof The only cases not covered by Propositions 5 and 6 are the following.
{|g| = 4, γ = 1}: Because νg(S) = 0, for all i we have νg3(Ti) ≥ 1, while
νg3(Si) ≤ 2. Hence we have 2d ≥ νg3(S) ≥ c, but also c

d ≥ 1 + δ−1
δ−1 = 2. Hence

all inequalities are equalities and νg3(Si) = 2 for all i. Then νg2(Si) = 0 for all
i, and thus νg2(S) = 0. But now σ(Ti) 6= g, so in fact there is no configuration.
{|g| = 2, γ = 1}: Because νg(Si) = 0, we have σ(Ti) 6= g. ut

4 〈g〉 ⊕H

With Theorem 3 we have resolved the case of G = 〈g〉, a cyclic group (pro-
vided |G| is even, which holds for all nontrivial G ∼= Z×n ). Otherwise, G/〈g〉 is
nontrivial and in the remainder we explore its structure.

In this section we consider nontrivial subgroups H ≤ G such that 〈g〉⊕H ≤
G. Such subgroups H need not exist, e.g. for (G, g) ∼= (Z25, 5). However they
do exist in two important cases, given by Propositions 7 and 8. In the ACM
context, these cases will include all n except powers of 2.

We recall first a lemma from the classical theory of finite abelian groups.

Lemma 2 Let G be a finite abelian group with |G| = y. Let x ∈ N satisfy x|y.
Then there is some subgroup H ≤ G with |H| = x.

Proof See, e.g., [18, p. 77]. ut

The following proposition allows us to not only address noncyclic groups
G, but also cyclic groups G provided that some prime divides |G| but not |g|.

Proposition 7 Let G be a finite abelian group with g ∈ G. Suppose that
|G| = xy and gcd(x, y) = gcd(x, |g|) = 1. Then there is some subgroup H ≤ G
with |H| = x and 〈g〉 ⊕H ≤ G.
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Proof By Lemma 2 there must be some H ≤ G with |H| = x. Let z ∈ 〈g〉∩H.
Then |z| divides both |g| and x, but then |z| = 1 so the conclusion follows. ut

Proposition 8 is an elementary result concerning finite abelian groups that
seems like it should be well-known, but we have no reference. For noncyclic
groups G, it provides a “large” subgroup H such that 〈g〉 ⊕ H ≤ G. This
directly generalizes the well-known result that if |g| = exp(G), then 〈g〉 ⊕
(G/〈g〉) ∼= G.

Proposition 8 Let G ∼= Zn1
⊕Zn2

⊕ · · · ⊕Znk be a finite abelian group, with
n1|n2| · · · |nk. Let g ∈ G. Then there is some H ≤ G such that 〈g〉 ⊕H ≤ G
and H ∼= Zn1

⊕ Zn2
⊕ · · · ⊕ Znk−1

.

Proof We first assume that G is a p-group for some prime p, i.e. G ∼= Zpa1 ⊕
Zpa2 ⊕· · ·⊕Zpak , for integers ak ≥ ak−1 ≥ · · · ≥ a1 ≥ 1. We write G additively
as k-tuples, and in particular g = (g1, g2, . . . , gk). For each i ∈ [1, k], let mi

be the order of gi in Zpai . Let M be chosen so that mM is maximal among
{m1, . . . ,mk}. By Lagrange’s theorem on finite groups, each mi is a power
of p for all i ∈ [1, k], so in particular mi|mM . Hence mM is the order of g,
and therefore each nonzero element of 〈g〉 has a nonzero element in the M th

coordinate. We now set H = {(b1, . . . , bk) ∈ G : bM = 0 and paM bk = 0}, a
subgroup of G. We have 〈g〉∩H = {0}, so 〈g〉⊕H ≤ G. Further, by swapping
the M th and kth coordinates, we see that H ∼= Zn1

⊕Zn2
⊕· · ·⊕Znk−1

⊕{0} ∼=
Zn1
⊕ Zn2

⊕ · · · ⊕ Znk−1
.

Suppose now that there are distinct primes p1, p2 . . . , ps and corresponding
p-groups G1, G2, . . . , Gs, such that G ∼= G1⊕G2⊕ · · · ⊕Gs. For each i ∈ [1, s]
we have Gi ∼= Z

p
a(i,1)
i

⊕ · · · ⊕ Z
p
a(i,ki)

i

, for integers a(i, ki) ≥ · · · ≥ a(i, 1) ≥ 1.

By the above, for each i ∈ [1, s] we find Hi ≤ Gi such that 〈g|Gi〉 ⊕Hi ≤ Gi
and Hi

∼= Z
p
a(i,1)
i

⊕ · · · ⊕ Z
p
a(i,ki−1)

i

. Let φi denote the natural embedding

of each p-group Gi into G, and set H = φ1(H1) + φ2(H2) + · · · + φs(Hs).
Because the primes are distinct, in fact φ1(H1)⊕ φ2(H2)⊕ · · · ⊕ φs(Hs) ≤ G,
and also 〈g〉 ⊕H ≤ G. We now have H ∼=

∏
Hi, and the result follows since

nk =
∏
i p
a(i,ki)
i , nk−1 =

∏
i p
a(i,ki−1)
i , . . .. ut

Proposition 8 admits an easy corollary, which will be useful in Section 6.

Corollary 1 Let G ∼= Zn1
⊕ Zn2

⊕ · · · ⊕ Znk be a finite abelian group, with
n1|n2| · · · |nk. Let g ∈ G. Then exp(G/〈g〉) ≥ nk−1.

Theorem 4 is the main result of this section, which requires the following
definition.

Definition 2 Let H ∼= Zm1
⊕Zm2

⊕· · ·⊕Zmk be a finite abelian group, where

m1|m2| · · · |mk. We define d?(H) = (m1 +m2 + · · ·+mk)−k =
∑k
i=1(mi−1).

Theorem 4 Let G be a finite abelian group and g ∈ G. Suppose that there is
some H ≤ G with 〈g〉 ⊕ H ≤ G. Let δ, γ ∈ N that satisfy δ ≥ |g| > γ > 0.
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Then there is a (G, g, δ, γ)-configuration, provided that the following inequality
holds:

d?(H) >

(
1− 1

|g|

)(
1

|g| − γ
+
δ − 1

δ − γ

)
Proof We will construct the configuration explicitly. Let α ∈ N be large. Let
h1, . . . , hk ∈ G with 〈h1〉 ⊕ · · · 〈hk〉 ⊕ 〈g〉 ≤ G, |hi| = mi for i ∈ [1, k], and

m1|m2| · · · |mk. Set S1 = (g−1)·|g|−γ−1 ·
∏k
i=1(hig

γ)·mi−1 ·(h−1i g−γ)·mi−1, S2 =

(g−1)·|g|−γ−1 ·
∏k
i=1(h−1i )·|g|

2m2
iα. We set T0 = (g−1)·|g|−γ , and for i ∈ [1, k]

set Ti = (hig
γ) · (h−1i ), T ′i = (h−1i g−γ)·|g|−1 · (h−1i )·|g|(mi−1)+1. Note that

σ(S1) = σ(S2) = gγ+1 and for all i ∈ [1, k], σ(Ti) = σ(T ′i ) = σ(T0) = gγ . If
x ∈ 〈g〉 ∩ (Σ(S1) ∪Σ(S2)) then in fact x ∈ Σ((g−1)·|g|−γ−1) and consequently
x /∈ {g, g2, . . . , gγ}.

For convenience, set a1 = |g| − 1, aγ = |g| − γ. We set d = a1aγα +
1 and S = S

a1aγα
1 S2. We set c = a1(aγ − 1)α + d?(H)|g|aγα and T =

T
a1(aγ−1)α
0

∏k
i=1 T

(mi−1)a1aγα
i T

′(mi−1)aγα
i . We now verify that T |S. For g−1,

we have νg−1(T ) = aγa1(aγ − 1)α < (aγ − 1)a1aγα + (aγ − 1) = νg−1(S).
For any i ∈ [1, k], we have νhigγ (T ) = (mi − 1)a1aγα = νhigγ (S). We also
have νh−1

i g−γ (T ) = (mi − 1)a1aγα = νh−1
i g−γ (S). Lastly we have νh−1

i
(T ) =

(mi−1)a1aγα+(mi−1)aγα(|g|(mi−1)+1) = (mi−1)miaγ |g|α ≤ m2
i |g|2α =

νh−1
i

(S). We now calculate

c

d
=
a1(aγ − 1)α+ d?(H)|g|aγα

a1aγα+ 1
=
a1(aγ − 1) + d?(H)|g|aγ

a1aγ + 1
α

=

=
a1(aγ − 1) + d?(H)|g|aγ

a1aγ
− ε(α) = 1− 1

aγ
+ d?(H)

|g|
a1
− ε(α)

> 1− 1

aγ
+

1

|g| − γ
+
δ − 1

δ − γ
= 1 +

δ − 1

δ − γ

Note that ε(α) > 0 satisfies limα→∞ ε(α) = 0, so we may take ε(α) small
enough to satisfy the inequality in the third line above. ut

Recall that in the ACM context we may assume that δ is a positive inte-
ger multiple of |g|. We will consider several cases separately in the following
corollaries. For the smallest value of δ = |g|, the following corollary shows that

it suffices to have d?(H) > |g|−1
|g|−γ . If d?(H) ≥ |g| then this condition is met for

all γ; otherwise it is met only for γ < |g| − |g|−1
d?(H) .

Corollary 2 Let G be a finite abelian group and g ∈ G. Suppose that there is
some H ≤ G with 〈g〉⊕H ≤ G. Let γ ∈ N such that |g| > γ > 0. Suppose that

d?(H) > |g|−1
|g|−γ . Then there is a (G, g, |g|, γ)-configuration.

Proof With δ = |g| we have
(

1− 1
|g|

)(
1
|g|−γ + δ−1

δ−γ

)
= |g|−1
|g|−γ . ut
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Corollary 3 Let G be a finite abelian group, and let exp(G) denote the ex-
ponent of G. Suppose that d?(G) ≥ 2 exp(G)− 1. Then there are (G, g, γ, δ)-
configurations for all g ∈ G and all γ, δ ∈ N satisfying δ ≥ |g| > γ > 0.

Proof Let g ∈ G. Apply Proposition 8 to get H ≤ G with 〈g〉 ⊕H ≤ G. We
have d?(H) + exp(G)− 1 = d?(G) ≥ 2 exp(G)− 1, so d?(H) ≥ exp(G) ≥ |g|.
We now apply Corollary 2 and Proposition 3. ut

If we exclude the smallest value of δ, namely |g|, we only need the weak
condition that d?(H) ≥ 3 to get all possible γ.

Corollary 4 Let G be a finite abelian group and g ∈ G. Suppose that there is
some H ≤ G with 〈g〉 ⊕H ≤ G. Let δ, γ ∈ N satisfy δ ≥ 2|g| and |g| > γ > 0.
Suppose that d?(H) ≥ 3. Then there is a (G, g, δ, γ)-configuration.

Proof Since δ − γ > |g| > γ − 1, we have 1 > γ−1
δ−γ . Therefore, d?(H) ≥ 3 >

2 + γ−1
δ−γ = 1 + δ−1

δ−γ >
(

1− 1
|g|

)(
1
|g|−γ + δ−1

δ−γ

)
. ut

Corollary 4 gives configurations for all γ, provided that d?(H) ≥ 3 and δ
is sufficiently large. If d?(H) = 2 (i.e. H ∼= Z3 or Z2 ⊕ Z2), then Corollary 5
shows that again we get configurations for all γ provided that δ is sufficiently
large. If d?(H) = 1 (i.e. H ∼= Z2), then we do not get configurations for all γ,
no matter the size of δ, as will be shown later in Proposition 10.

Corollary 5 Let G be a finite abelian group and g ∈ G. Suppose that there is

some H ≤ G with 〈g〉⊕H ≤ G and d?(H) = 2. Let δ, γ ∈ N satisfy δ > |g| |g|−12
and |g| > γ > 0. Then there is a (G, g, δ, γ)-configuration.

Proof It suffices to prove that 2 >
(

1− 1
|g|

)(
1
|g|−γ + δ−1

δ−γ

)
for γ = |g| − 1.

This is a rearrangement of δ > |g| |g|−12 . ut

In the special case of H = 〈h〉 with |h| = |g|, e.g. G ∼= Z3 ⊕ Z3, we have
d?(H) = |g| − 1. Here Theorem 4 does not apply for {δ = |g|, γ = |g| − 1},
although it would for larger δ or smaller γ. In fact there is a configuration for
this case as well, and hence for all δ, γ by Proposition 4.

Proposition 9 Let G be a finite abelian group. Let g, h ∈ G with 〈g〉⊕〈h〉 ≤ G
and |g| = |h|. Let δ, γ ∈ N0 satisfy δ ≥ |g| > γ ≥ 0. Then there is a (G, g, δ, γ)-
configuration.

Proof By Propositions 3 and 4, it suffices to consider the case δ = |g| and γ =
|g| − 1. Set k = |g| for convenience. Set d = 2, S1 = (hg−1)·2k, S2 = (h−1)·2k,
and S = S1S2. We have σ(S1) = (hk)2(g−k)2 = 1 = (h−k)2 = σ(S2). We
have Σ(S1) = {hig−i : i ∈ [1, 2k]}. Suppose that for some i, j ∈ N we had
hig−i = gj . Then we have hi = gj+i so by hypothesis hi = 1 and hence k|i so
hig−i = ((hg−1)k)i/k = 1. We also have Σ(S2) = 〈h〉 so Σ(S2)∩〈g〉 = {1}. We
set c = 2k and set T = (hg−1) · (h−1). We have σ(T ) = g−1 = gγ , and T c = S,
in fact a partition of S. Lastly, we compute c

d = |g| = 1 + δ−1
δ−(δ−1) = 1 + δ−1

δ−γ ,

as desired. ut
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5 exp(G/〈g〉)

We now continue the study of G/〈g〉, but drop the 〈g〉 ⊕ H ≤ G restriction
which is too strong in some cases. Instead we consider its exponent of G/〈g〉,
where we can find configurations if this exponent is at least 3. On the other
hand, in certain cases where this exponent is 2 or 3, we prove the nonexistence
of configurations for γ = |g| − 1.

In the ACM context this approach is fruitful for almost all n, p where
Theorem 3 does not apply, and complements the results of the previous section.

The following result uses a construction similar to that in Theorem 4.

Theorem 5 Let G be a finite abelian group and g ∈ G. Set K = 〈g〉, m =
exp(G/K). Let δ, γ ∈ N that satisfy δ ≥ |g| > γ > 0. Then there is a
(G, g, δ, γ)-configuration, provided that the following inequality holds:

m ≥ 1 +
1

|g| − γ
+
δ − 1

δ − γ

Proof We will construct the configuration explicitly. Let hK ∈ G/K satisfy
|hK| = exp(G/K) = m. Note that hs /∈ K for s ∈ [−(m−1), (m−1)]\{0}. For
each i ∈ [1, |g|], we set Si = (g−1)·|g|−γ−1 · (hgi)·m−1 · (h−1g−i)·m−1. We set
T0 = (g−1)·|g|−γ , and for i ∈ [1, |g|] set Ti = (hgγ+i) · (h−1g−i). Note that for
all i ∈ [1, |g|], we have σ(Si) = gγ+1 and σ(Ti) = gγ = σ(T0). If x ∈ K ∩Σ(Si)
then in fact x ∈ Σ((g−1)|g|−γ−1) and consequently x /∈ {g, g2, . . . , gγ}.

For convenience, set aγ = |g| − γ. We set d = |g|aγ and S =
∏|g|
i=1 S

aγ
i . We

set c = (aγ−1)|g|+(m−1)aγ |g| = maγ |g|−|g| and T = T
(aγ−1)|g|
0

∏|g|
i=1 T

(m−1)aγ
i .

We now verify that T |S (in fact T = S). For g−1, we have νg−1(T ) =
aγ(aγ − 1)|g| = νg−1(S). For any i ∈ [1, k], we have νhgi(T ) = (m − 1)aγ =
νhgi(S) and equally νh−1gi(T ) = (m − 1)aγ = νh−1gi(S). Lastly, we calculate
c
d =

maγ |g|−|g|
|g|aγ = m− 1

aγ
≥ 1 + δ−1

δ−γ by hypothesis. ut

As before, the theorem leads to several corollaries. Corollary 6 gives con-
figurations for all but one γ, and all sufficiently large δ.

Corollary 6 Let G be a finite abelian group. Let g ∈ G. Set K = 〈g〉. Suppose
that exp(G/K) ≥ 3 . Let δ, γ ∈ N with δ ≥ 3|g| and |g| − 1 > γ > 0. Then
there is a (G, g, δ, γ)-configuration.

Proof Suppose by way of contradiction that Theorem 5 fails to hold, i.e. 3 <

1 + 1
|g|−γ + δ−1

δ−γ ≤ 1 + 1
2 + 3|g|−1

2|g|+2 , where we used the hypotheses regarding δ

and γ. This rearranges to 3|g|+ 3 < 3|g|+ 1, a contradiction. ut

Corollary 7 Let G be a finite abelian group. Let g ∈ G. Set K = 〈g〉. Suppose
that exp(G/K) = m, for some m ≥ 4. Let δ, γ ∈ N with either

1. δ ≥ 2|g| and |g| > γ > 0; or
2. δ = |g| and m−2

m−1 |g| ≥ γ > 0.

Then there is a (G, g, δ, γ)-configuration.
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Proof Suppose by way of contradiction that Theorem 5 fails to hold, i.e. m <
1 + 1

|g|−γ + δ−1
δ−γ .

(1) Then m < 1 + 1 + 2|g|−1
|g|+1 , which rearranges to (m − 4)|g| < 1 − m, a

contradiction.
(2) Then m < 1 + |g|

|g|−γ , which rearranges to γ > m−2
m−1 |g|, a contradiction. ut

These corollaries show that there are configurations for all γ (for δ suf-
ficiently large) if exp(G/K) ≥ 4, and all but one γ for exp(G/K) = 3.
The case of that missing γ is addressed in Proposition 11, while the case
of exp(G/K) = 2 is addressed in Proposition 10.

Proposition 10 Let G be a finite abelian group. Suppose that G ∼= Z2 ⊕ Z2w

or G ∼= Z2w, with w ≥ 2. Let g ∈ G, and set K = 〈g〉. Suppose that G/K ∼= Z2.
Let δ ∈ N with δ ≥ |g|. Then there is no (G, g, δ, |g| − 1)-configuration.

Proof We first consider the special case of G ∼= Z4, γ = 1. By considering
possible Si it is easy to see that c

d > 1 is impossible. Suppose now that |g| > 2,
and we have such a configuration. Set γ = |g|−1 for convenience. Choose coset
representative h ∈ G \K. We have G = K ∪ (hK). For X ∈ F(G), we define
X+, X− such that X+ ∈ F(1K), X− ∈ F(hK), and X = X+ ·X−. We define
Q = {k ∈ G : |k| > 2} ⊆ G and φ : F(G) → N0 via φ(S) =

∑
k∈Q νk(S).

For each i ∈ [1, c], we claim that φ(Ti) ≥ 1 because otherwise Ti would consist
of elements of order at most 2, hence σ(Ti) would be of order at most 2, but
σ(Ti) = g−1 which is of order |g|. We now claim that φ(Si) ≤ 2 for each
i ∈ [1, d]. Suppose to the contrary for some i we have φ(Si) ≥ 3. We have
φ(S+

i ) = 0 so in fact φ(S−i ) ≥ 3. Hence there are some (hgx), (hgy), (hgz) ∈ Q
with (hgx) ·(hgy) ·(hgz)|S−i . Taking these pairwise, we get h2gx+z = h2gy+z =
1, since Σ(Si) ∩ {g, g2, . . . , gγ} = ∅. Modulo |g|, we have x + z ≡ y + z ≡ 0
and hence x ≡ y. But then (hgx)2 = (hgx)(hgy) = 1, so in fact (hgx) /∈ Q.
Combining the above, we get 2d ≥ φ(S) ≥ c hence 2 ≥ c

d ≥ 1 + δ−1
δ−γ . This

rearranges to 1 ≥ γ = |g| − 1, so 2 ≥ |g|, which is a contradiction. ut

Note that the conditions of Proposition 10 exclude the case G ∼= Z2 ⊕ Z2,
where configurations exist for all γ by Proposition 9.

Proposition 11 Let G be a finite abelian group. Suppose that G ∼= Z9w. Let
g ∈ G, and set K = 〈g〉. Suppose that G/K ∼= Z3. Let δ ∈ N with δ ≥ |g|.
Then there is no (G, g, δ, |g| − 1)-configuration.

Proof Suppose we had such a configuration. Set γ = |g| − 1 for convenience.
Choose coset representative h ∈ G \K. We have G = K ∪ (hK)∪ (h2K), with
h3 ∈ K. If there were some s ∈ [1, |g| − 1] such that h3 = g3s, then we have
(hg−s)3 = 1 and hence G ∼= K ⊕ Z3, which violates the hypothesis. Similarly,
there is no such s with (h2)3 = g3s.

Let Si be in our configuration; we claim that Si contains at most 4 non-
trivial elements. First, Si can contain no nontrivial elements from K. Suppose
that Si contains four elements from hK, say hgx1 , hgx2 , hgx3 , hgx4 . Multiply-
ing these three at a time, we get h3gx1+x2+x3 , h3gx1+x2+x4 ∈ ΣSi ∩K = {1}.
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Hence x3 ≡ x4 (mod |g|) and by symmetry x1 ≡ x2 ≡ x3 ≡ x4 (mod |g|).
But now (hgx1)3 ∈ ΣSi ∩ K = {1}, so h3 = (g−x1)3, which contradicts
our hypothesis. Hence Si contains at most three nontrivial elements from
hK and by symmetry at most three nontrivial elements from h2K. Suppose
now Si contained at least 5 nontrivial elements. At least three must be from
the same coset, so without loss Si contains hgx1 , hgx2 , hgx3 , h2gx4 . But now
h3gx1+x4 = h3gx2+x4 = h3gx3+x4 = 1, so x1 ≡ x2 ≡ x3 (mod |g|) and again
(hgx1)·3|Si, a contradiction.

Since νg−1(S) = 0 and σ(Ti) = g−1, each Ti in our configuration must
have at least two nonunit elements. Combining the above, we get 4d ≥ 2c, and
hence 2 ≥ c

d > 1 + δ−1
δ−γ . This rearranges to 1 ≥ γ = |g| − 1, so 2 ≥ |g|. But

then G ∼= Z6, a contradiction. ut

Compare Proposition 11 with Corollary 5, which gives us the opposite
conclusion for large δ, if G ∼= K ⊕ Z3. Note that by Corollary 6, Proposition
11 is tight for δ ≥ 3|g|. That is, γ = |g| − 1 is the only value of γ that does
not have a configuration.

6 Applications to ACM’s and Open Problems

We are now ready to apply our results on configurations to prove results about
ACM’s. We write n = 2spa11 p

a2
2 · · · p

ak
k . By the Chinese Remainder Theorem,

we have Z×n ∼= Z×2s×Z×
p
a1
1

×· · ·Z×
p
ak
k

. The structure here is well known (see, e.g.

[20]): Z×2 ∼= Z1, Z×4 ∼= Z2, Z×2s ∼= Z2 × Z2s−2 (for s ≥ 3), and Z×pa ∼= Zφ(pa) =
Zpa−1(p−1). Apart from the special case of Z1, each of these additive groups
has even rank. We may therefore canonically write Z×n ∼= Zn1

⊕Zn2
⊕· · ·⊕Znt ,

where 2|n1|n2| · · · |nt.

Theorem 1 Fix n ∈ N and consider the arithmetic congruence monoid M(p, α, n)
for various α and various primes p coprime to n. Then:

1. M(p, α, n) has accepted elasticity for all p and all sufficiently large α if for
some distinct odd primes p1, p2, p3 and positive integers a1, a2 we have:

(a) n ∈ {1, 2, 8, 12}; or
(b) p1p2p3|n or 4p1p2|n or 8p1|n; or
(c) n ∈ {pa11 p

a2
2 , 2p

a1
1 p

a2
2 }, and gcd(p1 − 1, p2 − 1) > 2.

2. For all other n, there are infinitely many primes p′ for which M(p′, α, n)
has accepted elasticity for all sufficiently large α, and also infinitely many
other primes p′′ for which M(p′′, α, n) does not have accepted elasticity for
infinitely many α.

The classification of p in (2) depends on its congruence class modulo φ(n).

Proof If n ∈ {1, 2} then Z×n ∼= Z1 so γ = 0 regardless of p, α, and we apply
Proposition 1. If n ∈ {8, 12}, then Z×n ∼= Z2 ⊕ Z2 and we apply Proposition 9.

If n is of one of the forms in 1b, then Z×n has 2-rank at least 3 and hence
t ≥ 3. We apply Proposition 8 to get some H ≤ G with 〈g〉⊕H ≤ G. Because
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H has rank at least 2, d?(H) ≥ 2. We may therefore apply Corollary 5 to get

configurations for all γ and all δ >
(|g|

2

)
.

If n is of one of the forms in 1c, then set w = gcd(p1 − 1, p2 − 1). We have
t = 2 and n1 = w, and w ≥ 4 since w is even. We apply Proposition 8 to get
some H ≤ G with 〈g〉⊕H ≤ G. Because n1 ≥ 4, d?(H) ≥ 3. We may therefore
apply Corollary 4 to get configurations for all γ and all δ > 2|g|.

For all n, if p ≡ 1 (mod φ(n)) then γ = 0 regardless of α, and we apply
Proposition 1. This demonstrates a prime with accepted elasticity for suffi-
ciently large α.

Suppose now that n has none of the forms from 1; we need to find primes
where elasticity is not accepted. If n > 2 admits a primitive root then we
take such a p and apply Theorem 3 with γ = |g| − 1. Suppose now that
n = 4pa11 . Then Z×n ∼= Z2 ⊕ Z2n2

and we may choose g with |g| = 2n2 and
apply Proposition 10. This equally works if n = pa11 p

a2
2 (or n = 2pa11 p

a2
2 ) and

gcd(p1 − 1, p2 − 1) = 2. It also works if n = 2s with s ≥ 4.
Finally, note that each [p] contains infinitely many primes by Dirichlet’s

theorem on primes in arithmetic progression. ut

The conclusions of Theorem 1 may be sharpened with more careful use
of our configuration results. We continue to write G ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕
Znt , with 2|n1|n2| · · · |nt. We divide such groups into four types, with groups
corresponding to n ∈ {1, 2, 4} excluded for convenience.

Type I: t ≥ 2 and nt−1 ≥ 4
Type II: t ≥ 3 and nt−1 = 2
Type III: t = 2 and nt−1 = 2
Type IV: t = 1

Type I corresponds to Theorem 1.1c and Type II to Theorem 1.1b. Asymp-
totically, “almost all” n are of these two types, because “almost all n have
about log log n prime factors” (see, e.g. [17]). We have strong results for these
two types, while Types III and IV require more care. Type III corresponds to
{2s, 4pa11 , p

a1
1 p

a2
2 , 2p

a1
1 p

a2
2 : s ≥ 4, p1, p2 odd primes, gcd(p1 − 1, p2 − 1) = 2}.

Type IV corresponds to {pa11 , 2p
a1
1 : p1 odd prime}.

Suppose that G is of Type I. Combining Corollary 1 with Corollary 7
gives configurations for all g and γ, for δ ≥ 2|g|. The same method gives
configurations for the missing δ = |g|, for all g, provided that γ ≤ nt−1−2

nt−1−1 |g| ≤
2
3 |g|. If |g| ≤ nt−1 (in particular if nt−1 = nt) then combining Propositions 8
and 9 gives configurations for all δ, γ.

Next, suppose that G is of Type II, i.e. G ∼= Zt−12 × Znt . For t ≥ 4, we
combine Proposition 8 with Corollary 4 to get configurations for all g and γ,
provided δ ≥ 2|g|. Corollary 2 gives configurations for the missing δ = |g|, for

all g, provided that γ < |g|(t−2)+1
t−1 . For t = 3, we apply Corollary 5, which

gives configurations for all g, γ, provided that δ > |g| |g|−12 .
Suppose now thatG is of Type III, i.e.G ∼= Z2⊕Znt . Here, we must consider

various g separately. We first consider |g| = nt. If nt = 2, then by Proposition 9
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there are configurations for all δ, γ. Assuming that nt ≥ 4, then by Proposition
10, there is no configuration for γ = nt−1, for any δ. By Propositions 5 and 3,
there are configurations for all γ < nt and all δ, provided nt ≥ 6. In between,
for γ ∈ [nt2 , nt − 2], we have no results. Suppose now that |g| = nt

2 . If nt
2 is

odd, then by Proposition 7 and Corollary 5 there are configurations for all γ,
provided δ >

(nt/2
2

)
. If nt2 is even, we have only the result of Propositions 5 and

3, which give configurations for γ < nt
4 , provided nt ≥ 12. Lastly, we consider

|g| < nt
2 . If exp(G/〈g〉) = 3, then we apply Corollary 6 to get configurations

for all δ ≥ 3|g| = nt and all γ 6= |g| − 1. Otherwise, exp(G/〈g〉) > 3, and we
apply Corollary 7 to get configurations for all δ ≥ 2|g| and all γ, as well as for
δ = |g| and certain γ.

Lastly, suppose that G is of Type IV, i.e. G ∼= Znt . If |g| = nt, then by
Theorem 3, irrespective of δ, configurations exist when nt > 4 and γ < nt

2 , and
do not exist otherwise. If |g| = nt

2 and nt ≥ 4, then by Proposition 10, there
is no configuration for γ = nt − 1, for any δ. If |g| = nt

2 and nt = 2, then by
Proposition 1, configurations exist for all δ. Suppose now that |g| = nt

3 . If 9|nt,
then by Proposition 11, there is no configuration for any δ, for γ = |g| − 1;
however by Corollary 6, there are configurations for all other γ. If instead
9 - nt, then by Proposition 7 and Corollary 5, there are configurations for all

γ, provided δ > |g| |g|−12 . Lastly, we consider |g| < nt
3 ; by Corollary 7 there are

configurations for all δ ≥ 2|g| and all γ, as well as for δ = |g| and certain γ.
Although we have made substantial progress on the elasticity question for

ACM’s, there are still several gaps in our work. Most notable is the case of

Type III and Type IV groups with g satisfying |g| = |G|
2 , where little is known

for most γ, δ. Preliminary work in the Type IV case suggests that there is a
cutoff τ ≈

√
|g|, such that if γ < τ configurations exist for δ sufficiently large

and if γ > τ configurations do not exist. This and other computational work
leads us to the following conjecture, for general G, g.

Conjecture 1 Suppose that there is a (G, g, δ, γ)-configuration, and γ > 0.
Then there is a (G, g, δ, γ − 1)-configuration.

Another gap is for Type III groups with g satisfying |g| = |G|
4 , where very

few γ are understood. Lastly, many of our results produce configurations for all
sufficiently large α (e.g. Corollaries 5, 7), leaving open the question of whether
configurations exist for smaller α.
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